Source code for deepparse.cli.test

import argparse
import logging
import sys

import pandas as pd

from .parser_arguments_adder import (
    add_csv_column_separator_arg,
    add_log_arg,
    add_cache_dir_arg,
    add_seed_arg,
    add_device_arg,
    add_batch_size_arg,
    add_path_to_retrained_model_arg,
    add_base_parsing_model_arg,
    add_num_workers_arg,
    add_csv_column_names_arg,
)
from .tools import (
    wrap,
    attention_model_type_handling,
    generate_export_path,
    replace_path_extension,
    data_container_factory,
)
from ..parser import AddressParser


[docs]def main(args=None) -> None: # pylint: disable=too-many-locals, too-many-branches """ CLI function to rapidly test an address parser on test data using the same argument as the :meth:`~AddressParser.test` method (with the same default values) except for the callbacks. The results will be logged in a CSV file next to the test dataset. Examples of usage: .. code-block:: sh test fasttext ./test_dataset_path.csv Modifying testing parameters .. code-block:: sh test bpemb ./test_dataset_path.csv --batch_size 128 --logging_path "./logging_test" """ if args is None: # pragma: no cover args = sys.argv[1:] parsed_args = get_args(args) test_dataset_path = parsed_args.test_dataset_path testing_data = data_container_factory( dataset_path=test_dataset_path, trainable_dataset=True, csv_column_separator=parsed_args.csv_column_separator, csv_column_names=parsed_args.csv_column_names, ) device = parsed_args.device if "cpu" not in device: device = int(device) parser_args = {"device": device, "cache_dir": parsed_args.cache_dir} path_to_retrained_model = parsed_args.path_to_retrained_model if path_to_retrained_model is not None: parser_args.update({"path_to_retrained_model": path_to_retrained_model}) base_parsing_model = parsed_args.base_parsing_model parser_args_update_args = attention_model_type_handling(base_parsing_model) parser_args.update(**parser_args_update_args) address_parser = AddressParser(**parser_args) batch_size = parsed_args.batch_size num_workers = parsed_args.num_workers seed = parsed_args.seed test_arguments = { "batch_size": batch_size, "num_workers": num_workers, "seed": seed, } results_export_path = generate_export_path(test_dataset_path, f"{address_parser}_testing.tsv") if parsed_args.log: logging_export_path = replace_path_extension(results_export_path, ".log") logging.basicConfig( filename=logging_export_path, format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO ) text_to_log = f"Testing results on dataset file {test_dataset_path} using the parser {address_parser}." logging.info(text_to_log) results = address_parser.test(test_dataset_container=testing_data, **test_arguments) pd.DataFrame(results, index=[0]).to_csv(results_export_path, index=False, sep="\t") if parsed_args.log: text_to_log = ( f"Testing on the dataset file {test_dataset_path} is finished. The results are logged in " f"the CSV file at {results_export_path}." ) logging.info(text_to_log)
def get_parser() -> argparse.ArgumentParser: """Return ArgumentParser for the CLI.""" parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) add_base_parsing_model_arg(parser) parser.add_argument( "test_dataset_path", help=wrap("The path to the dataset file in a pickle (.p, .pickle or .pckl) or CSV format."), type=str, ) add_path_to_retrained_model_arg(parser) add_batch_size_arg(parser) add_num_workers_arg(parser) add_seed_arg(parser) add_device_arg(parser) add_csv_column_names_arg(parser) add_csv_column_separator_arg(parser) add_log_arg(parser) add_cache_dir_arg(parser) return parser def get_args(args): # pragma: no cover """Parse arguments passed in from shell.""" return get_parser().parse_args(args)