Retrain a Pretrained Model Using A URI
import poutyne
from deepparse import download_from_public_repository
from deepparse.dataset_container import PickleDatasetContainer
from deepparse.parser import AddressParser
First, let’s download the train and test data from the public repository.
saving_dir = "./data"
file_extension = "p"
training_dataset_name = "sample_incomplete_data"
test_dataset_name = "test_sample_data"
download_from_public_repository(training_dataset_name, saving_dir, file_extension=file_extension)
download_from_public_repository(test_dataset_name, saving_dir, file_extension=file_extension)
Now let’s create a training and test container.
training_container = PickleDatasetContainer(os.path.join(saving_dir,
training_dataset_name + "." + file_extension))
test_container = PickleDatasetContainer(os.path.join(saving_dir,
test_dataset_name + "." + file_extension))
We will retrain the FastText
version of our pretrained model.
path_to_your_uri = "s3://<path_to_your_bucket>/fasttext.ckpt"
address_parser = AddressParser(model_type="fasttext", device=0, path_to_retrained_model=path_to_your_uri)
Now, let’s retrain for 5
epochs using a batch size of 8
since the data is really small for the example.
Let’s start with the default learning rate of 0.01
and use a learning rate scheduler to lower the learning rate as we progress.
# Reduce LR by a factor of 10 each epoch
lr_scheduler = poutyne.StepLR(step_size=1, gamma=0.1)
The retrained model best checkpoint (ckpt) will be saved in the S3 Bucket <path_to_your_bucket.
address_parser.retrain(training_container, logging_path="s3://<path_to_your_bucket/", train_ratio=0.8, epochs=5, batch_size=8, num_workers=2, callbacks=[lr_scheduler])
Now, let’s test our fine-tuned model using the best checkpoint (default parameter).
address_parser.test(test_container, batch_size=256)