Getting Started
from deepparse.parser import AddressParser
from deepparse.dataset_container import CSVDatasetContainer
address_parser = AddressParser(model_type="bpemb", device=0)
# you can parse one address
parsed_address = address_parser("350 rue des Lilas Ouest Québec Québec G1L 1B6")
# or multiple addresses
parsed_address = address_parser(["350 rue des Lilas Ouest Québec Québec G1L 1B6",
"350 rue des Lilas Ouest Québec Québec G1L 1B6"])
# or multinational addresses
# Canada, US, Germany, UK and South Korea
parsed_address = address_parser(
["350 rue des Lilas Ouest Québec Québec G1L 1B6", "777 Brockton Avenue, Abington MA 2351",
"Ansgarstr. 4, Wallenhorst, 49134", "221 B Baker Street", "서울특별시 종로구 사직로3길 23"])
# you can also get the probability of the predicted tags
parsed_address = address_parser("350 rue des Lilas Ouest Québec Québec G1L 1B6",
with_prob=True)
# Print the parsed address
print(parsed_address)
# or using one of our dataset container
addresses_to_parse = CSVDatasetContainer("./a_path.csv", column_names=["address_column_name"],
is_training_container=False)
address_parser(addresses_to_parse)
The default predictions tags are the following
"StreetNumber"
: for the street number,
"StreetName"
: for the name of the street,
"Unit"
: for the unit (such as apartment),
"Municipality"
: for the municipality,
"Province"
: for the province or local region,
"PostalCode"
: for the postal code,
"Orientation"
: for the street orientation (e.g. west, east),
"GeneralDelivery"
: for other delivery information.
Parse Addresses From the Command Line
You can also use our cli to parse addresses using:
parse <parsing_model> <dataset_path> <export_file_name>
Parse Addresses Using Your Own Retrained Model
See here for a complete example.
address_parser = AddressParser(
model_type="bpemb", device=0, path_to_retrained_model="path/to/retrained/bpemb/model.p")
address_parser("350 rue des Lilas Ouest Québec Québec G1L 1B6")
Retrain a Model
See here for a complete example using Pickle and here for a complete example using CSV.
address_parser.retrain(training_container, train_ratio=0.8, epochs=5, batch_size=8)
One can also freeze some layers to speed up the training using the layers_to_freeze
parameter.
address_parser.retrain(training_container, train_ratio=0.8, epochs=5, batch_size=8, layers_to_freeze="seq2seq")
Or you can also give a specific name to the retrained model. This name will be use as the model name (for print and class name) when reloading it.
address_parser.retrain(training_container, train_ratio=0.8, epochs=5, batch_size=8, name_of_the_retrain_parser="MyNewParser")
Retrain a Model With an Attention Mechanism
See here for a complete example.
# We will retrain the fasttext version of our pretrained model.
address_parser = AddressParser(model_type="fasttext", device=0, attention_mechanism=True)
address_parser.retrain(training_container, train_ratio=0.8, epochs=5, batch_size=8)
Retrain a Seq2Seq Model From Scratch
See here for a complete example.
seq2seq_params = {"encoder_hidden_size": 512, "decoder_hidden_size": 512}
address_parser.retrain(training_container, train_ratio=0.8, epochs=1, batch_size=128, seq2seq_params=seq2seq_params)
Download Our Models
Deepparse handles model downloads when you use it, but you can also pre-download our model. Here are the URLs to download our pretrained models directly
FastText Light (using Magnitude Light),.
Or you can use our CLI to download our pretrained models directly using:
download_model <model_name>