Source code for deepparse.cli.retrain

import argparse
import json
import sys
from typing import Dict

from .parser_arguments_adder import (
    add_seed_arg,
    add_batch_size_arg,
    add_base_parsing_model_arg,
    add_num_workers_arg,
    add_device_arg,
    add_csv_column_separator_arg,
    add_cache_dir_arg,
    add_csv_column_names_arg,
)
from .tools import (
    wrap,
    bool_parse,
    attention_model_type_handling,
    data_container_factory,
)
from ..parser import AddressParser

_retrain_parameters = [
    "train_ratio",
    "batch_size",
    "epochs",
    "num_workers",
    "learning_rate",
    "seed",
    "logging_path",
    "disable_tensorboard",
    "layers_to_freeze",
    "name_of_the_retrain_parser",
]


def parse_retrained_arguments(parsed_args) -> Dict:
    dict_parsed_args = vars(parsed_args)
    parsed_retain_arguments = {}

    for retrain_parameter in _retrain_parameters:
        value = dict_parsed_args.get(retrain_parameter)
        parsed_retain_arguments.update({retrain_parameter: value})

    return parsed_retain_arguments


def handle_prediction_tags(parsed_args):
    dict_parsed_args = vars(parsed_args)
    path = dict_parsed_args.get("prediction_tags")

    tags_dict_arguments = {"prediction_tags": None}  # Default case

    if path is not None:
        with open(path, "r", encoding="UTF-8") as file:
            prediction_tags = json.load(file)
            if "EOS" not in prediction_tags.keys():
                raise ValueError("The prediction tags dictionary is missing the EOS tag.")
            tags_dict_arguments.update({"prediction_tags": prediction_tags})
    return tags_dict_arguments


[docs]def main(args=None) -> None: # pylint: disable=too-many-locals, too-many-branches """ CLI function to easily retrain an address parser and save it. One can retrain a base pretrained model using most of the arguments as the :meth:`~AddressParser.retrain` method. By default, all the parameters have the same default value as the :meth:`~AddressParser.retrain` method. The supported parameters are the following: - ``train_ratio``, - ``batch_size``, - ``epochs``, - ``num_workers``, - ``learning_rate``, - ``seed``, - ``logging_path``, - ``disable_tensorboard``, - ``layers_to_freeze``, and - ``name_of_the_retrain_parser``. Examples of usage: .. code-block:: sh retrain fasttext ./train_dataset_path.csv Using a GPU device .. code-block:: sh retrain bpemb ./train_dataset_path.csv --device 0 Modifying training parameters .. code-block:: sh retrain bpemb ./train_dataset_path.csv --device 0 --batch_size 128 --learning_rate 0.001 """ if args is None: # pragma: no cover args = sys.argv[1:] parsed_args = get_args(args) training_data = data_container_factory( dataset_path=parsed_args.train_dataset_path, trainable_dataset=True, csv_column_separator=parsed_args.csv_column_separator, csv_column_names=parsed_args.csv_column_names, ) val_data = parsed_args.val_dataset_path if val_data is not None: val_data = data_container_factory( dataset_path=parsed_args.val_dataset_path, trainable_dataset=True, csv_column_separator=parsed_args.csv_column_separator, csv_column_names=parsed_args.csv_column_names, ) base_parsing_model = parsed_args.base_parsing_model device = parsed_args.device if "cpu" not in device: device = int(device) parser_args = {"device": device, "cache_dir": parsed_args.cache_dir} parser_args_update_args = attention_model_type_handling(base_parsing_model) parser_args.update(**parser_args_update_args) address_parser = AddressParser(**parser_args) new_tags_parser_args_update_args = handle_prediction_tags(parsed_args) parser_args.update(**new_tags_parser_args_update_args) parsed_retain_arguments = parse_retrained_arguments(parsed_args) address_parser.retrain( train_dataset_container=training_data, val_dataset_container=val_data, **parsed_retain_arguments )
def get_parser() -> argparse.ArgumentParser: """Return ArgumentParser for the CLI.""" parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) add_base_parsing_model_arg(parser) parser.add_argument( "train_dataset_path", help=wrap("The path to the dataset file in a pickle (.p, .pickle or .pckl) or CSV format."), type=str, ) parser.add_argument( "--val_dataset_path", help=wrap( "The path to the validation dataset file in a pickle (.p, .pickle or .pckl) or CSV format. " "If the dataset are CSV, both train and val must have the same CSV formatting " "(columns names). If not provided, the train dataset will be split in a train and val " "dataset (default is None)." ), type=str, default=None, ) parser.add_argument( "--train_ratio", help=wrap( "The ratio to use of the dataset for the training. The rest of the data is used for the " "validation (e.g. a training ratio of 0.8 mean an 80-20 train-valid split) (default is 0.8)." ), type=float, default=0.8, ) add_batch_size_arg(parser) parser.add_argument( "--epochs", help=wrap("The number of training epochs (default is 5)."), type=int, default=5, ) add_num_workers_arg(parser) parser.add_argument( "--learning_rate", help=wrap("The learning rate (LR) to use for training (default 0.01)."), type=float, default=0.01, ) parser.add_argument( "--logging_path", help=wrap( "The logging path for the checkpoints and the retrained model. " "Note that training creates checkpoints, and we use the Poutyne library that uses the best epoch " "model and reload the state if any checkpoints are already there. " "Thus, an error will be raised if you change the model type. For example, " "you retrain a FastText model and then retrain a BPEmb in the same logging path directory." "By default, the path is './checkpoints'." ), type=str, default="./checkpoints", ) parser.add_argument( "--disable_tensorboard", help=wrap("To disable Poutyne automatic Tensorboard monitoring. By default, we disable them (true)."), type=bool_parse, default="True", ) parser.add_argument( "--layers_to_freeze", help=wrap( "Name of the portion of the seq2seq to freeze layers, thus reducing the number of parameters to learn. " "Default to None." ), choices=[None, "encoder", "decoder", "prediction_layer", "seq2seq"], type=str, default=None, ) parser.add_argument( "--name_of_the_retrain_parser", help=wrap( "Name to give to the retrained parser that will be used when reloaded as the printed name, " "and to the saving file name. By default, None, thus, the default name. See the complete parser retrain " "method for more details." ), default=None, type=str, ) parser.add_argument( "--prediction_tags", help=wrap( "Path to a JSON file of prediction tags to use to retrain. Tags are in a key-value style, where " "the key is the tag name, and the value is the index one." "The last element has to be an EOS tag. Read the documentation for more details about the EOS tag." ), default=None, type=str, ) add_seed_arg(parser) add_device_arg(parser) add_csv_column_names_arg(parser) add_csv_column_separator_arg(parser) add_cache_dir_arg(parser) return parser def get_args(args): # pragma: no cover """Parse arguments passed in from shell.""" return get_parser().parse_args(args)